LC232. Implement Queue using Stacks¶
Problem Description¶
LeetCode Problem 232: Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (push
, peek
, pop
, and empty
).
Implement the MyQueue
class:
void push(int x)
Pushes element x to the back of the queue.int pop()
Removes the element from the front of the queue and returns it.int peek()
Returns the element at the front of the queue.boolean empty()
Returnstrue
if the queue is empty,false
otherwise.
Clarification¶
- Any requirement on time complexity of different operations? Still O(1)?
- What to return when stack is empty?
Assumption¶
-
Solution¶
Approach - 2 Stacks with Move¶
- Use one input stack for pushing new elements
- Use one output stack for peak/pop
- Move all elements from input stack to output stack when performing peep/po with empty output stack. So the order is reversed with the correct one for peep/pop.
from collections import deque
class MyQueue:
def __init__(self):
self.input_stack = deque()
self.output_stack = deque()
def push(self, x: int) -> None:
self.output_stack.append(x)
def pop(self) -> int:
self.move()
return self.input_stack.pop()
def peek(self) -> int:
self.move()
return self.input_stack[-1]
def empty(self) -> bool:
return not self.input_stack and not self.output_stack
def move(self):
if not self.input_stack:
while self.output_stack:
self.input_stack.append(self.output_stack.pop())
Complexity Analysis of Approach 1¶
-
Time complexity: \(O(1)\) or Amortized \(O(1)\)
push
: \(O(1)\)pop
: Amortized \(O(1)\)
Since this moving operation only happens once for each element (when it is about to be popped), the amortized time complexity for pop() is O(1)peek
: Amortized \(O(1)\)empty
: \(O(1)\)
-
Space complexity: \(O(n)\)
In the worst case, store \(n\) elements
Test¶
- Empty
- 1 element
- normal queue